

Hash-based UTI
Generation

Version: 86
Date: 16-Feb-2024

 Page 2 of 37

Copyright Notice

This document is the confidential and proprietary information of PONTON
GmbH ("Confidential Information"). You shall not disclose such Confidential
Information and shall use it only in accordance with the terms of the license
agreement you entered into with PONTON GmbH.

 Page 3 of 37

Table of Contents
Copyright Notice .. 2

Table of Contents .. 3

1. Hash-based UTI Generation ... 5

1.1. Version Control ... 5

1.1.1. Changes in Version 1.2 (06.01.2014) .. 5

1.1.2. Changes in Version 1.3 (January 29) ... 5

1.1.3. Changes in Version 1.4 (12.03.2014) .. 5

1.1.4. Changes in Version 1.5 (09.11.2023) .. 6

1.2. What is the Problem? .. 6

1.3. How does the UTI hash function work? .. 6

1.4. The UTI generator works as follows: .. 7

1.5. Central or decentral generation of a UTI? ... 8

1.6. Standardisation ... 9

1.7. Frequently Asked Questions ... 9

2. UTI generation algorithm ... 15

2.1. Field types ... 15

2.2. Used input fields for hash creation .. 16

2.2.1. General specification for UTI hash input data elements 16

2.3. Algorithm ... 20

3. Example deal ... 21

3.1. Example deal 1 ... 22

3.2. Example deal 2 with slightly different deal data .. 23

4. CpML --> UTI-Field-Mappings .. 24

4.1. Fallback UTI generation in the CMS context .. 24

4.2. General Information .. 24

4.3. Commodities ... 24

4.3.1. Physical Commodity Trades (FOR, OPT, PHYS_INX, OPT_PHYS_INX) 26

4.3.2. Financial Commodity Trades (Financial deals based on a fixed price leg:
FXD_SWP, OPT_FXD_SWP, OPT_FIN_INX) .. 28

 Page 4 of 37

4.3.3. TradeConfirmation (Financial deals with two float legs: FLT_SWP,
OPT_FLT_SWP) ... 29

4.4. FX ... 31

4.5. IRS .. 33

4.6. ETDs ... 35

Hash-based UTI Generation

 Page 5 of 37

1. Hash-based UTI Generation

1.1. Version Control

1.1.1. Changes in Version 1.2 (06.01.2014)

• Encoding will be UTF-8

• Whitespaces at the beginning / end of values are not allowed

• Numbers will not have thousands seperator (e.g. use 30000000 and not 30,000,000)

• The RunningNumber is created based on equal KeyData

1.1.2. Changes in Version 1.3 (January 29)

• UTI length reduced to 42 characters for length compatibility with USIs under Dodd-
Frank

• Rules and value lists adjusted for CpML compatibility

• "Commodity" key element renamed in "Product", Commodity Reference Code
renamed in Price/Rate Reference Code, as a generalisation across asset classes

• Extension for FX, IRS, and ETD asset classes

• Use "." for decimal delimiter (e.g. 3000.0000 and not 3000,0000)

• Buyer is selected by the LEI code, not by the EIC code.

1.1.3. Changes in Version 1.4 (12.03.2014)

• Extend generated Running Numbers to 01 to 99 followed by AA, AB, … ZY, ZZ for
trade with the same commercial terms

• UTI generator accept capital letters and numbers as RunningNumber

• Rules and value lists adjusted for:

o Price for Financial commodity deals with two float legs

o EffectiveDate and MaturityDate for Physical commodity deals

Hash-based UTI Generation

 Page 6 of 37

1.1.4. Changes in Version 1.5 (09.11.2023)

• new implementation adopts the ISO Format (ISO 23897)

o only uppercase latin letters a to z without modifikations and digits

o length is limited to 52

o (18 uppercase characters or digits) (2 digits) (up to 32 uppercase characters
or digits)

o Removed UTI-Generator as Excel macro

1.2. What is the Problem?
UTIs need to be generated for trades under EMIR and REMIT for both counterparties to
identify their trades by the same ID. This is complicated since the two counterparties may
have difficulties to exactly find those two trade data sets which belong together.

Currently, each of the two counterparties can only issue a local trade ID with a different UTI
value on each side. Dissemination of the related UTIs of each side is considered as one of
the most complicated issue when reporting under EMIR as there is no standard process or
best practise how to exchange a UTI between the right traders for related trade data.

Using the EFETnet eCM service would help link the two trade data sets and provide a UTI to
buyer and seller but this might be too late as the deadline for reporting is t+1.

One solution would be to use the trade ID issued by an exchange or broker platform but this
might also be complicated if a trade is split into two half-trades: the counterparty isn’t any
more the original one but, instead, the CCP or the clearing bank may slip into that role. And
even worse, for some trading organisations it might be too much an effort to implement the
import of platform-generated UTIs prior to the go-live of EMIR.

To make it more complicated: How to assign UTIs to historic trades? Or how to transfer UTIs
if fax is used to exchange trade confirmations? And do both parties always agree on the
same principle to share a UTI? Probably not.

Fortunately, we found a solution that is simple and usable by any type of trading
organisation. It is based on using a hash function which allows to create exactly the same
UTI value if the input data is the same.

1.3. How does the UTI hash function work?
What does a hash function do? It takes an input text and transforms it into a data value of a
given length (e.g. with a length of 30 characters).

Hash-based UTI Generation

 Page 7 of 37

The input text could be the data elements taken from the example further down. If put in the
right order as a string, the result is the following:

5299002Z3I75TD5QSV03SN633FGTWNSOZMOJY6802013-11-11PowerFOR2014-01-
012015-01-011000.01001200000.0000EUR

This includes the key data of a trade. The output value of the hash function would be:
LEI45678901234567890DBBXNGOAZT8QSECEJAJ0AROKU18HQR.

If only a little change is made to the input data, e.g.,
5299002Z3I75TD5QSV03SN633FGTWNSOZMOJY6802013-11-11PowerFOR2014-01-012015-
01-011000.01001300000.0000EUR

the part without the prefix would be completely different, e.g.:
LEI456789012345678903DHTZNKUG0ZBYPBYUK4OF5GPNUBC1U .

It is therefore extremely unlikely that the hash function will lead to exactly this same value for
a second trade with different trade data (less than 1 : 1.000.000.000.000).

If now the two counterparties sit on separate islands in China and in Brasil, respectively,
without an Internet access, but knowing the prefix and that the buyer is BP, the seller is
Shell, the trade date is 15.11.2013 etc. then they would be in the position to locally create
exactly the same hash value.

1.4. The UTI generator works as follows:
• A standard set of key trade data elements is transformed into an initial trade ID hash,

e.g. “DBBXNGOAZT8QSECEJAJ0AROKU18HQR”. The used data items are: Buyer
LEI, Seller LEI, Trade Date, Product, PriceRateReferenceCode, TransactionType,
EffectiveDate, MaturityDate, TotalVolume, Price, and Currency.

• If there is more than one trade with the same key data (i.e., trades with the same
commercial terms on the same trade date), the ID is made unique by addition of a
running number. The two equivalent trades would then be assigned the unique IDs
“DBBXNGOAZT8QSECEJAJ0AROKU18HQR01” and
“DBBXNGOAZT8QSECEJAJ0AROKU18HQR02”.

• Finally, the LEI of the party generating the hash is used as a prefix.
LEI45678901234567890DBBXNGOAZT8QSECEJAJ0AROKU18HQR01 and
LEI45678901234567890DBBXNGOAZT8QSECEJAJ0AROKU18HQR02 if LEI is
“LEI45678901234567890”.

The part without the prefix is independent of the party (buyer or seller) generating the UTI
values since both parties using the same algorithm will generate matching UTIs
independently and without the need to exchange data.

Hash-based UTI Generation

 Page 8 of 37

Figure 1 UTI generation process

UTI generation works in two steps:

1. Data mapping. This is either done by retrieving the UTI input data out of the ETRM
system or out of the CpML documents, or by manually data entry into the UTI Web
GUI. Data mapping is in the responsibility of the trader, the rules how to apply correct
data elements, how to format and how to order them is defined in section CpML -->
UTI-Field-Mappings.

2. Technical processing: This is an algorithm that works identically for all use cases. Is
was defined by EFET and developed by Ponton as a Java reference
implementation.

1.5. Central or decentral generation of a UTI?
UTIs can be created by different means

• Central UTI creation GUI: you may go to http://uti.equias.org/ and fill out the UTI
creation form. This is the easiest way but is has one disadvantage: should there be a
second trade on the same day with exactly the same key data the central form-based

Hash-based UTI Generation

 Page 9 of 37

generator won’t know about this. I.e., it will always create a “…01” UTI value. So this
only works for demo purposes or if you know exactly that you are not using this for
“clone” trades.

• “Do it yourself”: Finally, it makes sense for your IT staff to build the UTI generator
into your local trading system such that the UTI is generated on-the-fly whenever you
enter a trade. For your inspiration, sample Java code is made available here.

1.6. Standardisation
It is very important that hash-based UTIs are created exactly in the same way everywhere.
Although the UTI generator may be used in a test phase for some more days or weeks, we
finally have to freeze the algorithm such that discrepancies are avoided. The following rules
need to be obeyed by each party for distributed UTI creation:

• A standard set of trade data elements needs to be selected

• Data has to be organised in a standard order

• Data elements have to be formatted in a standard way

• A hash value has to be created using a standard algorithm, further transformations
apply in a standard way: transformation of the hash value in BASE64 format and then
further transformation in alphanumeric format

• Trades which result in the same hash value consist probably of the same trade data
– but to achieve Unique Trade Ids they have to be made unique – also in a standard
way (by adding the running number)

• The easiest way to accomplish this is to use the same software implementation that
validates and processes data in exactly the same way.

1.7. Frequently Asked Questions
• Is it possible that the same UTI is created for two trades with different key data?

In principal yes, but the likelihood is extremely low such that this possibility can be
ignored. Also, in line with the ISDA protocol, UTIs should be added to the trade
confirmation leading to reconciliation of any discrepancies between counterparties.

• What if there is a mistake in the key data such that our UTI has a different value than
the UTI generated by our counterparty?
This may happen, and it will probably happen in 1-2% of all cases, depending on the
point in time when the UTI is generated. If this is detected, e.g., through eCM
confirmation matching, any discrepancies should have been remedied. If it takes
place before confirmation matching, confirmation matching may lead to a correction

Hash-based UTI Generation

 Page 10 of 37

of data in this case the seller’s UTI will be disseminated through confirmation (after
application of any amendments and upon successful matching) according to the
ISDA protocol, this will be the case even if the UTI was generated using trade data
which was subject to amendment in confirmation. It should not be assumed therefore
that the UTI is equivalent to the original data used to generate it, as the data may be
subsequently changed (as a result of confirmation or another lifecycle event resulting
in trade detail amendment) whilst the UTI will always remain unchanged following
successful confirmation.

• Is the UTI safe? Can it be reverse engineered?
The current UTI algorithm uses an open standard describing all the input fields and
the hashing algorithm. The list of fields has been chosen balancing the uniqueness
requirements versus the easiness to implement the generation process. Using static
data for some of the input fields and applying common sense to some other fields
could make it possible to apply a brute force reverse engineering mechanism to the
UTIs. It remains therefore advisable to safeguard the confidentiality of UTIs and
ensure they are only handled and exchanged using appropriately secured
communication processes. EFETnet uses such secure channels for both electronic
Confirmation Matching (eCM) and electronic Regulatory Reporting (eRR) in all
directions: data exchange with traders and brokers as well as with trade repositories.

• Can I use this technique for backloading?
Yes, the approach is particularly relevant to resolving back loading issues related to
the generation of matching UTIs for historic transactions. Under the assumption that
historic trades are confirmed and therefore the likelihood for discrepancies is mostly
avoided, you and your counterparty may independently create the same set of UTIs
prior to back loading under EMIR and REMIT.

• What does this service cost?
Nothing. It is a free service provided by EFETnet.

• Who is allowed to use this service?
Everyone. It has been extended for assets classes such as FX and IRS since version
1.3 and would principally also work for others – we only need to define standard
values for the Product and PricerateReferenceCode fields.

• My trade data is very sensitive, how safe is it?
We process your data on-the-fly without storing anything on disk.

• Has this been tested by someone?
Yes, Centrica did some tests with counterparties and with more than 1.000 trades the
hit rate (i.e. generating the same UTI value on both sides) was 99.7%.

Hash-based UTI Generation

 Page 11 of 37

• Why do you add the index as the last step and not before hash creation?
We believe that is is an important information for users to recognise if there are clone
trades such that they can dedicate special attention to them. On the other hand, this
doesn't disclose any sensitive trade details to a third party. And finally, the function
that generates UTIs can easily recognise if an UTI has already been created for
another clone trade with the same trade data.

• How many clone trades can be indexed?
So far, we have implemented indexing between 01 and 99. If there is a request to
extend this range, we would continue countinlexically from "AA" to "ZZ" which would
provide another 676 clone members.

• Does the algorithm support formula swaps?
Yes, since version 1.3 you may use your formula ID instead of the price/rate
reference code for any commodity trade that uses float price information leg.

• What is the risk of a UTI clash if clone trades are executed on different platforms?

o Let's assume that a trade is executed bilaterally between two traders X and Y,
they would both locally generate a USI XY01. Then the same trade is
executed on broker B. B issues USI XY01 because B does not know about
the “bilateral XY01”.

o This problem occurs if two traders use different UTI assigning agencies and
change them within a set of clone trades (jointly or unilaterally).

o Another example:

§ CP X and CP Y do a trade through broker B, B issues UTI XY01 for
this first trade in a clone set.

§ CP X uses the UTI created by the broker (XY01), CP Y creates an
own UTI: also XY01 as this is the first case – everything fine so far!

§ Then a clone trade is created, B issues XY02 (as B knows about the
previously created XY01) and X accepts it from the broker. But now
CP Y does neither create an own one nor uses the UTI created by the
broker (in the first case Y would see a uniqueness violation which
would lead to an increment to XY02 if implemented correctly, in the
second case B would increment the UTI anyway).

• Instead, Y leaves the UTI element empty and lets EFETnet
create the UTI through the eCM channel. As EFETnet does not
know about the history, EFETnet would create a XY01 if Y is
the seller and would even override X’s XY02 with a XY01.

Hash-based UTI Generation

 Page 12 of 37

Can this be avoided? Is not realistic that traders change the UTI generation issuer within
a day for the same set of clone trades. Therefore, traders MUST NOT change the
UTI generating agent within a set of clone trades.

• What other situations exists which may lead to a UTI clash?
The following may happen:

o Two traders do exactly the same trade twice. However, trader X makes a
mistake when entering the deal data for trade 2, i.e., the following is created

§ Trader X:

• Deal 1: YXCVBNM01

• Deal 2: QWERTZU01

§ Trader Y:

• Deal 1: YXCVBNM01

• Deal 2: YXCVBNM02

At a later time, trader X corrects the deal data of deal 2 to YXCVBNM01 as
the history of UTI creation for deal 1 is not available anymore.
Solution: UTI generating entities MUST keep track of previously created UTIs
to detect clashes and to increment the UTI index if a clash occurs.

• Which value to use for data elements “TotalVolume” and “Price” in case of a physical
trade with a list of delivery time intervals?

o for TotalVolume: calculate for each time interval the delivery hours, summed
up across all delivery time intervals.

o For Price use the CpML TotalContractValue, it is calculated as defined in the
CpML standard: for each time interval: delivery hours * hourly price, summed
up across all delivery time intervals.

• How is the update process for the UTI generator and for the static data code used?

o Static data codes, specifically for price / rate reference code, are maintained
by EFET and published here:
http://staticdata.efet.org/view.aspx?d=IndexCommodity. Whenever we take
over such extensions of static data, we will publish this in the UTI Generator
change log. Any such updates apply for all UTI Generator channels (Web,
Java reference code) at the same time to avoid inconsistencies.

o Code updates / algorithm updates: The same applies here, we will announce
an update date and adjust all channels at the same time.

Hash-based UTI Generation

 Page 13 of 37

o Please send in your request for new static data to support@efetnet.org. The
support team will analyse the request, ensure compatibility and compliance
with existing static data and post it onto the static data webpage

• How to cope with ESMA’s Q&A update of February 11th 2014, which partly also
affects the UTI format and generation process?

o As this is obviously too late to be addressed for go-live under EMIR, we
suggest the following: for the time being, keep the UTI algorithm and format
as it stand today. EFETnet will will publish an impact analysis based on the
latest FAQs on the UTI generation and dissemination next week and then
organise a conf call to discuss potential way(s) forward, including
implementation timing and change management. After having discussed with
ESMA how to further proceed here, EFETnet will announce an update date
well in advance such that all users of the UTI Generator and Ponton can
synchronise their switch-over to a new schema.

• How to transfer a UTI to the CMS for eCM and how is a created UTI transfered back
to the participant?

o Trader --> eCM: The UTI is transfered to the eCM service using the CpML
ECMEnvelope/EUReporting section.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ECMEnvelope

xsi:noNamespaceSchemaLocation=http://www.efet.org/schemas/V4R2
/EFET-ENV-V4R2.xsd
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <TradeConfirmation>
 <DocumentID>CNF_123@example.com<DocumentID>
 <!-- content of a wellformend CNF -->
 </TradeConfirmation>
 <ECMAdditionalData>

<ReferencedDocumentID>CNF_123@example.com</ReferencedDocumentI
D>

 <CreationTimestamp>...</CreationTimestamp>
 <EUReporting>
 <UTI>...</UTI>
 </EUReporting>
 </ECMAdditionalData>
</ECMEnvelope>

• eCM --> Trader: A UTI generated by the eCM or eRR service is sent back to the
trader, using the eRR BoxResult:

Hash-based UTI Generation

 Page 14 of 37

<BoxResult>
 <DocumentType>CNF</DocumentType>
 <DocumentID>CNF_123@example.com</DocumentID>
 <DocumentVersion>1</DocumentVersion>
 <ebXMLMessageId>CENTRAL_MATCHING</ebXMLMessageId>
 <State>MATCHED</State>
 <Timestamp>2013-11-12T10:29:27</Timestamp>
 <Counterparty>
 <DocumentID>CNF_123@other.com</DocumentID>
 <DocumentVersion>1</DocumentVersion>
 <ebXMLMessageId>CENTRAL_MATCHING</ebXMLMessageId>
 </Counterparty>
 <EUReporting>
 <UTI>AYE8YOZQ4HXXXXXXXXXX</UTI>
 </EUReporting>
</BoxResult>

• To use the abovementioned Envelope and eRR BoxResult with <EUReporting>,
CMS users have to apply this patch for their UAT Ponton X/P installation:

http://ponton-consulting.de/downloads/xp/efet/hub/efet-dist-3.1-cms-
test-ECM42-patch.zip

• How to transfer a UTI to the CMS for eRR and back to the participant?

o In case of eRR, the UTI is part of the reporting envelope:
CpmlDocment/Reporting/Europe/EURegulatoryDetails/UTI

o An eRR BoxResult providing a UTI back to the participant looks as follows:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<ERRBoxResult>
 <DocumentID>CPML_20131002_tradeid0001@party</DocumentID>
 <DocumentVersion>1</DocumentVersion>
 <Timestamp>2013-10-15T15:37:07.868+01:00</Timestamp>
 <EuropeResult>
 <Action>REPORTING</Action>
 <Result>OK</Result>
 <Regime>Emir</Regime>
 <Repository>UNAVISTA</Repository>
 <ReportingResult>
 <TradeID>tradeid0001</TradeID>
 <UTI>PARTY000000000000001</UTI>
 </ReportingResult>
 </EuropeResult>
</ERRBoxResult>

Hash-based UTI Generation

 Page 15 of 37

2. UTI generation algorithm

2.1. Field types
Type Description Regular expression

String A UTF-8 representation of a value. No whitespaces
characters are allowed at the beginning or end of the value.
For whitespace definition refer to the REGEX specification.

[^\s](.*[^\s])?

Date A date is a String with the following format YYYY-MM-DD.
Where

• YYYY is the year of the date

• MM is the month of the date (01-12)

• DD the day of the month of the date (01-31)

\d\d\d\d-\d\d-
\d\d

Enum A enumeration is a String with predefined values. Please
refer to the field description for allowed values.

Decimal A decimal is a String with

• always with 4 decimal precision, e.g. (10000.0000 or
0.0000 or 0.1000 or 0.0001)

• see regular expression

\d+\.\d{4}

RunningNumber The number to make trade identifiers of trades with identical
commercial terms unique

[A-Z0-9][A-Z0-
9]

Hash-based UTI Generation

 Page 16 of 37

2.2. Used input fields for hash creation
If the buyer is that party with a lexically lower party code (applicable in case of swaps with
two float legs), parties are ordered based on their LEI code, not the EIC code. For the
avoidance of doubt: A conversion EIC code --> LEI code has to be performed prior to UTI
generation.

The following Table defines the order, data types and content types that are generally used
for the respective hash input data values.

Depending on the combination of TransactionTypes and asset classesthe following trade
types are defined:

1. physical commodity trades

2. Index-based trades

3. Fixed-float swaps / swaptions

4. Float-float swaps / swaptions

5. FX trades

6. IRS trades

7. ETD trades

Trade type specific data mappings are defined in Section CpML --> UTI-Field-Mappings)

2.2.1. General specification for UTI hash input data elements

Field name Orde
r

Usage Type Description

BuyerID 1 Mandatory String Enter here the LEI of the buyer. It will be used
to generate the UTI value, but not for the
namespace.

SellerID 2 Mandatory String Enter here the LEI of the seller. It will be used
for both the UTI namespace and the value. Out
of the seller LEI code characters 7-16 are used
as the UTI namespace, following the ISDA rule.
If there is no seller to the trade (e.g. in case of a
swap), the seller of the fixed leg or the
counterparty with the lexically lower LEI in a
float/float swap goes here.

TradeDate 3 Mandatory Date The trade date.

Hash-based UTI Generation

 Page 17 of 37

Field name Orde
r

Usage Type Description

Product 4 Conditiona
l

String For physical commodities: Power, Gas, Oil, Coal,
Bullion, Metal, Agriculturals, Paper,
ReactivePower, EUAPhase_1, EUAPhase_2,
EUAPhase_3, CER

For FX trades: FXSpot, FXForward, FXSwap,
FXOption, FXForward_Non_Delivererable,
FXOption_Non_Deliverable,

For IRS trades: IRSwap, Basis, CrossCurrency,
Commodity, ForeignExchange, Equity,
EquityBond, InterestRate, Credit,
InterestRateODRF

Find a detailed specification of the CpML data
mapping here: CpML --> UTI-Field-Mappings

PriceRateReferenceCod
e

5 Conditiona
l

String For financial commodity trades (FLT_SWP,
FXD_FXD_SWP, FXD_SWP, OPT_FIN_INX ,
OPT_FLT_SWP, OPT_FXD_SWP.) and for
physical commodity trades based on a price
index (PHYS_INX, OPT_PHYS_INX)

• use one of the index references
(attribute description of the EFET
element) as defined in the eCM
standards for XML type
"ISDACommodity-DefinitionsType".
E.g., “OIL-BRENT-IPE”.

• These allowed static data values as
published by EFET are published here:
http://www.efet.org/Standardisation/S
tatic-data (attribute code of the EFET
element in the XML representation).

Otherwise this field is left blank (for FOR and
OPT_FOR)

Find a detailed specification of the CpML data
mapping in section CpML --> UTI-Field-
Mappings

TransactionType 6 Mandatory Enum Use one of the following: DAH, IND, SPT, FOR,
FUT, PHYS_INX, OPT_PHYS_INX, FXD_SWP,
FXD_FXD_SWP, FLT_SWP, OPT, OPT_FXD_SWP,
OPT_FLT_SWP, OPT_FIN_INX. Detailed rules

Hash-based UTI Generation

 Page 18 of 37

Field name Orde
r

Usage Type Description

when to use which TransactionType value are
given here: CpML --> UTI-Field-Mappings.

EffectiveDate 7 Conditiona
l

Date This is the start date in case of a physical
delivery schedule or the effective date in case
of a financial product.

MaturityDate 8 Conditiona
l

Date This is the end date in case of a physical
delivery schedule or the maturity date in case
of a financial product.

TotalVolume 9 Mandatory Decima
l

• 4 decimal places required precision to
normalise data entries. This is the
overall delivery volume in case of
physical trades. The assumption is that
both counterparties have agreed on the
same unit of measure.

• TotalVolume (QuantityType): Always
use positive quantities without a sign. If
a quantity has more than 4 decimal
places, truncate any further decimal
places to 4.
(e.g.: 1000.12345678 --> 1000.1234 or
1000.666666 --> 1000.6666)

Find a detailed specification of the CpML data
mapping in section CpML --> UTI-Field-
Mappings

Price 10 Conditiona
l

Decima
l

• Use TotalContractValue or unit price,
depending on trade type.

• TotalContractValue (PriceType): Always
use positive quantities without a sign. If
a quantity has more than 4 decimal
places, truncate any further decimal
places to 4.
(e.g.: 1000.12345678 --> 1000.1234 or
1000.666666 --> 1000.6666)

Find a detailed specification of the CpML data
mapping in section CpML --> UTI-Field-
Mappings

Currency 11 Conditiona String The currency of the price of the deal, based on

Hash-based UTI Generation

 Page 19 of 37

Field name Orde
r

Usage Type Description

l the ISO 3-letter code (ISO 4217)

Find a detailed specification of the CpML data
mapping in section CpML --> UTI-Field-
Mappings

Hash-based UTI Generation

 Page 20 of 37

2.3. Algorithm
Step Description Name

1. The fields will be concatenated to the DealKeyData. Optional fields will be
left out.

DealKeyData

2. The DealKeyData will be hashed with the SHA-256 algorithm to a
DealRawHash which has a size of 256 bits.

DealRawHash

3. 1. The DealRawHash will be encoded by Base64 (RFC 4648) int the
DealLongHash.

2. The character '+' will be replaced by 'A' and the character '/' will be
replaced by 'B' in DealLongHash.

3. The first 30 characters of the result of the replacement step (step 3.2.)
will by used as DealHash.

DealHash

4. The DealHash will be made unique by addition of a RunningNumber starting
with 01.
If there are more than one trades with the same KeyDealData (same deal
hash so far) (i.e., trades with the same commercial terms on the same trade
date), the next RunningNumber will be 02 to 99 followed by AA, AB, … ZY, ZZ.
This will give us 775 unique numbers.

RunningNumber

5. An LEI will be used as UTIPRefix UTIPrefix

6. Finally concatenate the UTI:
UTI = UTIPRefix + DealHash + RunningNumber

UTI

Hash-based UTI Generation

 Page 21 of 37

3. Example deal

Hash-based UTI Generation

 Page 22 of 37

3.1. Example deal 1
Field name Value

LEI LEI45678901234567890

Buyer 5299002Z3I75TD5QSV03

Seller SN633FGTWNSOZMOJY680

Trade Date 2013-11-11

Product Power

Price/Rate
ReferenceCode

Transaction Type FOR

Effective Date 2014-01-01

Maturity Date 2015-01-01

Total Volume 1000.0100

Price 1200000.0000

Currency EUR

RunningNumber 01

DealKeyData 5299002Z3I75TD5QSV03SN633FGTWNSOZMOJY6802013-11-
11PowerFOR2014-01-012015-01-011000.01001200000.0000EUR

DealLongHash d//XNGOazt8QSeCEJaj0ARoKU18HqrifbSLLNqfcRhA=

UTI LEI45678901234567890DBBXNGOAZT8QSECEJAJ0AROKU18HQR

Hash-based UTI Generation

 Page 23 of 37

3.2. Example deal 2 with slightly different deal
data

Field name Value

LEI LEI45678901234567890

Buyer 5299002Z3I75TD5QSV03

Seller SN633FGTWNSOZMOJY680

Trade Date 2013-11-11

Product Power

PriceRate
ReferenceCode

Transaction Type FOR

Effective Date 2014-01-01

Maturity Date 2015-01-01

Total Volume 1000.0100

Price 1300000.0000

Currency EUR

RunningNumber 01

DealKeyData 5299002Z3I75TD5QSV03SN633FGTWNSOZMOJY6802013-11-
11PowerFOR2014-01-012015-01-011000.01001300000.0000EUR

DealLongHash 3dhTznkug0zByPByUk4oF5gPNU/C1umMdOpVFhx7reQ=

UTI LEI456789012345678903DHTZNKUG0ZBYPBYUK4OF5GPNUBC1U

Hash-based UTI Generation

 Page 24 of 37

4. CpML --> UTI-Field-Mappings

4.1. Fallback UTI generation in the CMS context
The following algorithm will be used if the hash base UTI generation can not be performed
on the given trade in the CMS system, e.g. one of the party could not be mapped to a LEI
code or it has not even an LEI code (parties from outside the EU)

Concatenate the following parts:

• The characters 7-16 (6WMSOHHJW5) of the EFETnet LEI
(5493006WMSOHHJW5ZO63)

• The time stamp the UTI is generated in format yyyyMMddHHmmssSSS

o yyyy (the year), MM (the month starting with 01), dd (the day starting with 01),
HH (the hour 0-23), mm (the minutes), ss (the seconds), SSS (the
milliseconds)

• 15 random alphanumeric chars consisting of numbers 0-9 and characters A-Z
excluding the letters 'I' and 'O'

4.2. General Information
The following information provides a precise definition how to map UTI key data from CpML
document input. This applies to the asset classes Commodities, FX, IRS, and ETDs.
Information on CpML can be found here: www.cpml.eu. Intermediate releases of CpML
schemas and documentation can be found here:https://err.ponton-consulting.de/ (password
required).

The entry points for asset class specific XML paths are here:

• Commodities: CpmlDocument/TradeConfirmation/...

• FX: CpmlDocument/FXTradeDetails/...

• IRS: CpmlDocument/IRSTradeDetails/...

• ETDs: CpmlDocument/ETDTradeDetails/...

4.3. Commodities
Remarks

Hash-based UTI Generation

 Page 25 of 37

• Data element name "Commodity" in version 1.2 is replaced by "Product" in version
1.3 as the scope of UTI generation also covers other asset classes than commodities

• Data element name "CommodityReferenceCode" in version 1.2 is replaced by
"PriceRateReferenceCode" in version 1.3 for the same reason

Hash-based UTI Generation

 Page 26 of 37

4.3.1. Physical Commodity Trades (FOR, OPT, PHYS_INX,
OPT_PHYS_INX)

Field Mapping (source: TradeConfirmation/...) Remark

Buyer BuyerParty Use the buyer LEI here

Seller SellerParty Use the seller LEI here

TradeDate TradeDate In format: YYYY-MM-DD

Product Commodity Source values are of type
EnergyProductType with the
following value
"Power", "Gas", "Oil", "Coal",
"Bullion", "Metal",
"Agriculturals", "Paper",
"ReactivePower",
"EUAPhase_1", "EUAPhase_2",
"EUAPhase_3", "CER"

PriceRateReferenc
eCode

FOR, OPT: leave blank

PHYS_INX, OPT_PHYS_INX:
FloatPriceInformation/FormulaID

 if present, else

FloatPriceInformation[1]/CommodityRe
ferences/
CommodityReference[1]/CommodityRefer
encePrice

Applies to index-priced trades
only.

Use the first occurrence of
CommodityReferencePrice
(which is the ISDA commodity
definition).

Formula trades use the
FormulaID instead.

TransactionType TransactionType FOR, OPT, PHYS_INX,
OPT_PHYS_INX

EffectiveDate TimeIntervalQuantity[1]/DeliveryStar
tDateAndTime

 if present, else

EUATradeDetails/EmissionsDeliveryDat
e

Get the date part of
DeliveryStartDateAndTim

e from the first
TimeIntervalQuantity

Emission trades use the
EmissionsDeliveryDate.

Format: YYYY-MM-DD

MaturityDate TimeIntervalQuantity[last]/DeliveryE
ndDateAndTime

 if present, else

EUATradeDetails/EmissionsDeliveryDat

Get the date part of
DeliveryEndDateAndTime
from the last
TimeIntervalQuantity

Hash-based UTI Generation

 Page 27 of 37

Field Mapping (source: TradeConfirmation/...) Remark

e Emission trades use the
EmissionsDeliveryDate.

Format: YYYY-MM-DD

TotalVolume TotalVolume CNF it is dot separated and has
8 decimal places.

Truncate to 4 decimal places if
necessary

Price FOR: TotalContractValue

OPT: OptionDetails/TotalPremiumValue

PHYS_INX: leave blank

OPT_PHYS_INX: leave blank

In case of a FOR use
TotalContractValue

(price per unit is not used
here as the total contract
value is considered more
selective, moreover, Price is
per TimeInterval so that it
may vary from interval to
interval)

In case of an OPT use
OptionDetails/TotalPrem
iumValue

Currency Currency Ignore the "UseFractionUnit"
attribute

Hash-based UTI Generation

 Page 28 of 37

4.3.2. Financial Commodity Trades (Financial deals based on a
fixed price leg: FXD_SWP, OPT_FXD_SWP,
OPT_FIN_INX)

Field Mapping (source: TradeConfirmation/...) Remark

Buyer see "Physical Commodity Trades"

Seller see "Physical Commodity Trades"

TradeDate see "Physical Commodity Trades"

Product leave blank

PriceRateReferenceC
ode

FloatPriceInformation/FormulaID

 if present, else

FloatPriceInformation[1]/CommodityRefe
rences/
CommodityReference[1]/CommodityReferen
cePrice

as for index-priced
physical trades

TransactionType see "Physical Commodity Trades" FXD_SWP, OPT_FXD_SWP,
OPT_FIN_INX

EffectiveDate EffectiveDate

MaturityDate TerminationDate

TotalVolume see "Physical Commodity Trades"

Price FixedPrice Use FixedPrice in first
occurrence of
DeliveryPeriods/DeliveryP
eriod section

Currency see "Physical Commodity Trades"

Hash-based UTI Generation

 Page 29 of 37

4.3.3. TradeConfirmation (Financial deals with two float legs:
FLT_SWP, OPT_FLT_SWP)

Field Mapping (source:
TradeConfirmation/...
)

Remark

Buyer BuyerParty Use the buyer LEI

For FLT_SWP use greater LEI (BuyerParty, SellerParty) after
ascending alphanumeric sorting.

Seller SellerParty Use the seller LEI

For FLT_SWP use lower LEI (BuyerParty, SellerParty) after
ascending alphanumeric sorting.

TradeDate TradeDate In format: YYYY-MM-DD

Product Leave blank

PriceRateRef
erenceCode

FloatPriceInform
ation/
FormulaIDFloatPr
iceInformation/
CommodityReferen
ces/
CommodityReferen
ce/
CommodityReferen

cePrice

Use the first leg (with lower LEI of FloatPricePayer after
alphanumeric sorting).

If this is a formula leg, use the formula ID,

otherwise use
TradeConfirmation/FloatPriceInformation/CommodityReferen
ces/CommodityReference/CommodityReferencePrice

(Use the first CommodityReference).

 Type is ISDACommodityDefinitionsType

TransactionT
ype

TransactionType Use values: FLT_SWP, OPT_FLT_SWP

EffectiveDate EffectiveDate Use EffectiveDate

MaturityDat
e

TerminationDate Use TerminationDate

TotalVolume TotalVolume CNF it is dot separated and has 8 decimal places ==> Truncate
to 4 decimal places if necessary, must be converted to dot
separated and 4 places

Price FloatPriceInform
ation/
FormulaSpreadInf
ormation/
SpreadInformatio
n/ SpreadAmount

or

Formula Swap (i.e. FloatPriceInformation[1]/FormulaID is
present)

• use the first occurrence
FloatPriceInformation[i]/FormulaSpreadInformation/S

Hash-based UTI Generation

 Page 30 of 37

Field Mapping (source:
TradeConfirmation/...
)

Remark

FloatPriceInform
ation/
CommodityReferen
ces/
CommodityReferen
ce/
SpreadInformatio
n/ SpreadAmount.

preadAmount

• if none found, use 0.0000 (numerical zero)

Swap without formula (i.e. FloatPriceInformation[1]/FormulaID
is not present)

• use the first occurrence of
FloatPriceInformation[i]/CommodityReferences/Com
modityReference[j]/SpreadInformation/SpreadAmoun
t

• if none found, use 0.0000 (numerical zero)

Currency Currency

Hash-based UTI Generation

 Page 31 of 37

4.4. FX
Field Mapping (source:

FXTradeDetails/...)
Remark

Buyer BuyerParty Use the buyer LEI here

Seller SellerParty Use the seller LEI here

TradeDate TradeDate In format: YYYY-MM-DD

Product FXProduct Use: FXProduct, values are:

 "FXSpot"

 "FXForward"

 "FXSwap"

 "FXOption"

 "FXForward_Non_Delivererable"

 "FXOption_Non_Deliverable"

PriceRateRefer
enceCode

Leave blank

TransactionTy
pe

FXTransactionType Use FXTransactionType: ("FOR", "OPT",
"FXD_FXD_SWP", "OPT_FXD_FXD_SWP", "SPT")

EffectiveDate FXSingleLeg/ExchangedCurren
cy/ValueDate

or

FXOption/EffectiveDate

In case of a "FOR" and "SPT": Use
FXSingelLeg[1]/ValueDate (this equals the
maturity date)

In case of a Swap ("FXD_FXD_SWP"): use first
occurance of ValueDate (chronological order),
use chronologically first Value date within the
two occurances of ExchangeCurrency.

In case of an option ("OPT",
"OPT_FXD_FXD_SWP"): use
FXOption/EffectiveDate

MaturityDate FXSingleLeg/ExchangedCurren
cy/ValueDate

or

FXOption/FXExerciseSchedule
/ExpiryDate or

FXOption/FXExerciseSchedule
/ExpiryDateAndTime

In case of a "FOR" and "SPT": Use
FXSingelLeg[1]/ValueDate (this equals the
effective date)

In case of a Swap ("FXD_FXD_SWP"): use last
occurance (chronological order) of
FXSingelLeg/ValueDate, use chronologically last
Value date within the two occurances of
ExchangeCurrency.

Hash-based UTI Generation

 Page 32 of 37

Field Mapping (source:
FXTradeDetails/...)

Remark

In case of an option ("OPT",
"OPT_FXD_FXD_SWP"): extract the date value
out
of FXOption/FXExerciseSchedule/Expir
yDate or
FXOption/FXExerciseSchedule/ExpiryD

ateAndTime, whichever is populated.

TotalVolume FXSingleLeg/
ExchangedCurrency/
PaymentAmount

or

FXOption/ PutCurrencyAmount/
Amount

In case of a "FOR", "SPT" and "FXD_FXD_SWP":
Use the first occurance of FXSingleLeg, then use
that occurance of ExchangedCurrency where
BuyerParty = PayerParty, then use
PaymentAmount.

In case of an option ("OPT",
"OPT_FXD_FXD_SWP"): Use the Put amount.

CNF it is dot separated and has 8 decimal
places ==> Truncate to 4 decimal places if
necessary

Price FXSingleLeg/ ExchangedRate/
SpotRate

or

FXOption/ PremiumPayments/
PremiumPayment/
PremiumPaymentValue

In case of FOR, SPT, FXD_FXD_SWP: Within the
first occurance of FXSingleLeg, use first
occurance of ExchangedRate/SpotRate.

(Not clarified yet: Should we add
ForwardPoints here as done for EMIR
reporting?)

In case of OPT or OPT_FXD_FXD_SWP use first
occurrence of
FXOption/PremiumPayments/PremiumPay
ment/PremiumPaymentValue

Currency FXSingleLeg/
ExchangedCurrency/
PaymentCurrency

or

FXOption/ PutCurrencyAmount/
Currency

In case of a "FOR", "SPT" and "FXD_FXD_SWP":
Use the first occurance of FXSingleLeg, then use
that occurance of ExchangedCurrency where
BuyerParty = PayerParty, then use
PaymentCurrency.

In case of an option ("OPT",
"OPT_FXD_FXD_SWP"): Use the Put currency.

Hash-based UTI Generation

 Page 33 of 37

4.5. IRS
Field Mapping (source:

IRSTradeDetails/...)
Remark

Buyer BuyerParty Use the buyer LEI here

Seller SellerParty Use the seller LEI here

TradeDate TradeDate In format: YYYY-MM-DD

Product IRSProduct Use IRSProduct, values are:

 "IRSwap",

 "Basis",

 "CrossCurrency"

PriceRateReferenceCode SwapStreams/ SwapStream/
CalculationPeriodAmount/
Calculation/
FloatingRateCalculation/
FloatingRateIndex

Use FloatingRateIndex of first
float leg if
FloatingRateCalculation exists
(if there are two SwapStream legs,
the first one is where BuyerParty =
PayerParty). Otherwise leave it
empty

TransactionType TransactionType Use TransactionType "FXD_SWP",
"FXD_FXD_SWP", "FLT_SWP",
"OPT_FXD_SWP",
"OPT_FXD_FXD_SWP",
"OPT_FLT_SWP"

EffectiveDate SwapStreams/ SwapStream/
CalculationPeriodDates/
EffectiveDate/
EffectiveDate

Use firstOccurance of SwapStream
where PayerParty = BuyerParty

MaturityDate SwapStreams/ SwapStream/
CalculationPeriodDates/
TerminationDate/
TerminationDate

Use firstOccurance of SwapStream
where PayerParty = BuyerParty

TotalVolume SwapStreams/ SwapStream/
CalculationPeriodAmount/
Calculation/
NotionalSchedule/
NotionalStepSchedule/
InitialValue

Use firstOccurance of SwapStream
where PayerParty = BuyerParty

CNF it is dot separated and has 8
decimal places ==> Truncate to 4
decimal places if necessary

Price SwapStreams/
CalculationPeriodAmount/

Use InitialValue of first leg
if FixedRateSchedule exists (if

Hash-based UTI Generation

 Page 34 of 37

Field Mapping (source:
IRSTradeDetails/...)

Remark

Calculation/
FixedRateSchedule/
InitialValue

there are two SwapStream legs, the
first one is where BuyerParty =
PayerParty). Otherwise leave it
empty

Currency Currency Currency

Hash-based UTI Generation

 Page 35 of 37

4.6. ETDs
Field Mapping (source:

ETDTradeDetails/...)
Remark

Buyer ETDTradeDetails/
BuyerDetails/
BuyerParty

or

ETDTradeDetails/
ReceiverID

Use the buyer LEI here

Seller ETDTradeDetails/
SellerDetails/
SellerParty

or

ETDTradeDetails/
ReceiverID

Use the seller LEI here

TradeDate ETDTradeDetails/
MTFDetails/
ExecutionTimesta
mp

or

ETDTradeDetails/
BuyerDetails/
ExecutionTimesta
mp

or

ETDTradeDetails/
SellerDetails/
ExecutionTimesta
mp

Extract date out of DateTime string

Product PrimaryAssetClas
s

Use PrimaryAssetClass

PriceRateRefere
nceCode

CpMLDocument/
Reporting/
Europe/
EURegulatoryDeta
ils/ TradeID

Use
CpMLDocument/Reporting/Europe/EURegulatoryDet
ails/TradeID

(Open issue: We would like to use the platform's
product ID here (like, e.g., "FB01" at EEX or "PM4TC CAL11
C40000" in case of NOS), but we found out that some
trading organisations do not keep track of these product
type and use internal product IDs instead. The alternative
would be to use the 'TransactionReferenceNumber' of the

Hash-based UTI Generation

 Page 36 of 37

Field Mapping (source:
ETDTradeDetails/...)

Remark

venue if this is the same for both sides.)

TransactionType ETDTradeDetails/
ETDTransactionTy
pe

Use ETDTransactionType:

“FOR”: Physical Forward that settles against a fixed price

“OPT”: Option on a physical forward

“PHYS_INX”: Physical forward that settles against an index

“OPT_PHYS_INX”: Option on a physical forward that settles
against an index

“FXD_SWP”: Fixed/float swap

“FXD_FXD_SWP”: Fixed/fixed swap

“FLT_SWP”: Float/float swap

“OPT_FXD_SWP”: Fixed/float swaption

“OPT_FXD_FXD_SWP”: Fixed/fixed swaption

“OPT_FLT_SWP”: Float/float swaption

“OPT_FIN_INX”: Option on an index.

“FUT”: Exchange traded future (can be traded off exchange
but under the terms of the Regulated Market)

“OPT_FUT”: Exchange traded option (can be traded off
exchange but under the terms of the Regulated Market)

“SPT”: Spot transaction.

EffectiveDate ETDTradeDetails/
ClearingParamete
rs/ Product/
DeliveryPeriod/
DeliveryStartDat
eAndTime

If it exists, use Date of
ClearingParameters/Product/DeliveryPeriod/Del
iveryStartDateAndTime

Otherwise leave empty.

MaturityDate ETDTradeDetails/
ClearingParamete
rs/ Product/
DeliveryPeriod/
DeliveryEndDateA
ndTime

If it exists, use Date of
ClearingParameters/Product/DeliveryPeriod/Del
iveryEndDateAndTime

Otherwise leave empty.

TotalVolume ETDTradeDetails/
ClearingParamete
rs/ Lots

Use ClearingParameters/Lots. ERR-980 - ETD UTI
calculation: TotalVolumen must match regular expression of
'\d+\.\d{4}'. [value=10000] but there are <Lots> and no
<TotalVolume> GESCHLOSSEN

Hash-based UTI Generation

 Page 37 of 37

Field Mapping (source:
ETDTradeDetails/...)

Remark

Extend to 4 decimal places.

Price ETDTradeDetails/
ClearingParamete
rs/ UnitPrice

In case of OPT_* transactions types
ClearingParameters/UnitPrice (in case of options
this element holds the premium amount)

In case of other transaction types the price per unit goes
here (also use ClearingParameters/UnitPrice).

Currency Leave blank

PONTON GmbH

Dorotheenstraße 64
22301 Hamburg
GERMANY

www.ponton.de

